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In-Mold Decoration (IMD) is an efficient, durable and cost effective technique for printing, painting, and forming plastic
decorations. However, a large number of parameters involved in IMD manufacturing process and the complex relationship
between these parameters make the determination of the optimal parameter setting a challenging task. This paper proposes a
systematic framework integrating Response Surface Methodology (RSM) and logistic vegression to improve the yield of IMD
manufacturing process. The integrated framework becomes easy to identify the optimal parameter setting, saving a great deal of
time and money in the manufacturing process. On the empirical study in collaboration with IMD company, the proposed
framework shows the significant result from 10% to 87.5%, validating the viability of the proposed framework in real settings.

1. Introduction

In today’s world, plastic products are pervasive almost
everywhere. In-Mold Decoration (IMD) is an efficient, durable and
cost effective technique for printing, painting, and forming plastic
decorations. Since its introduction, IMD has rapidly become the
priority choice due to its wide design flexibility and effects that
cannot be achieved through other processes. Unlike the traditional
printing on the surface, IMD sets the labeling and decoration between
the film and the resin. The printed film is placed on one side of the
mold and the molten plastic is injected onto the back of the film. The
film and the plastic are then bonded as an integral unit and the
decoration is embedded inside. Comparing to other methods, IMD
can enhance the appearance and the durability of the finished product.
More attractively, it allows the product to have multiple colors and
3D design shape on its surface, which cannot be achieved by other
methods.

While IMD is advantageous in many aspects, its process usually
suffers from low yields. This is mainly because IMD involves many
parameters in the manufacturing process. If these manufacturing
parameters are not appropriately set, the finished product can easily
become defective. Specifically, as shown in Fig. 1, IMD consists of
four major stages: film printing, thermoforming, trimming and
injection molding; each stage further includes dozens of steps.
Collectively, the whole IMD process can have 70-100 manufacturing
parameters. In the current practice, the parameter setting of IMD is
determined based on either a trial-and-error approach or domain
engineers’ personal experience. Both are biased and can easily lead to

low yields.

While the parameter setting can significantly affect the yield of
IMD, its determination is a challenging task. This can attribute to the
following reasons. First, the number of parameters involved in the
IMD process is large, leading to an astronomical number of possible
manufacturing settings. For example, consider an IMD process
involving 70 manufacturing parameters, each having two possible
settings. There will be a total of 27° possible manufacturing settings,
which are too many to determine which one is the best. Second, the
relationship between IMD parameters is complicated, nonlinear and
unknown. To uncover this relationship, it is only possible to run
experiments. However, experimentation is usually costly in terms of
time and money. Third, the production output is stochastic in nature,
i.e., the finished product can be defective or non-defective with the
same parameter setting.

In the literature, some approaches have been proposed to deal
with the parameter optimization problem arising in a number of
different fields. For example, Lin' proposed an optimization
technique based on Taguchi technique for face milling stainless steel.
Three cutting parameters with multiple performances are optimized
through the proposed technique. Altan® utilized Taguchi method,
experimental design and the analysis of variance (ANOVA) to find
the optimal injection molding condition for minimum shrinkage. Yin
et al® developed an artificial neural network (ANN) model for
parameter optimization with the goal of decreasing the warpage value
during PIM process. Park and Dang*® used neural network and
regression analysis to build the relationship between the input
processes and output responses. Oktem et al.® found the optimal
parameter for thin-shell plastic components by Taguchi method.
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Fig. 1 The manufacturing process of IMD

Among these approaches, Taguchi method is a well-known
technique for investigating the optimal parameter setting’. It
introduces a new concept called signal-to-noise (S/N) ratio and
utilizes it to quantify one product’s quality. The optimal parameter
setting corresponds to the one that can result in the largest S/N ratio.
While Taguchi method has been widely applied to solve parameter
optimization problem, it can only handle small- to medium-level
problems. Moreover, it does not allow interaction effects to be
estimated in the experimentation. On the other hand, artificial neural
network (ANN), inspired by the biological neural network, is another
popular method in parameter optimization. It is useful in building the
relationship between inputs and outputs of complex systems. Many
successful applications in finance, telecommunication, and
manufacturing have been demonstrated. However, ANN is a data-
driven approach; a large amount of data is required to produce
meaningful results. For the manufacturing process where data is
expensive, ANN is not applicable. Besides, ANN is a black box to
analysts; the generated results can be hard to interpret.

In this research, a framework that integrates response surface
methodology (RSM) ® and logistic regression’ is proposed to identify
the optimal parameter setting to render IMD the highest yield. RSM is
a sequential procedure widely used to optimize the response of
interest in physical experiments'®. Logistic regression, on the other
hand, is a type of regression analysis used for predicting the outcome
of categorical response variables. The basic structure of the proposed
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Fig. 2 The sequential nature of the proposed framework

framework is outlined as follows: instead of attempting to explore the
whole parameter space in one shot, the proposed framework explores
a small region in succession where designed experiments are
sequentially employed and a local response surface is built to find the
improved solution (parameter setting). In this research, one major
difficulty for applying the traditional RSM to find the optimal
parameter setting of IMD is that the output of the IMD process is
categorical, i.e., the finished product can only be either defective or
non-defective. By contrast, the traditional RSM assumes the response
is quantitative. To address this issue, the proposed framework employ
logistic regression technique to convert the categorical output of IMD
into a quantitative variable, enabling the application of the response
surface methodology.

Compared to the trial-and-error approach and domain engineer’s
judgment, the proposed framework is a scientific and systematic
approach that can quickly identify the optimal parameter setting,
saving a great deal of time and money in the ramp-up stage.
Moreover, because the proposed framework is a design-of-
experiment-based framework, it can handle large-scale problems
more efficiently®; the interaction effects between parameters (or
“factors” if in RSM terminology) can also be estimated in the
experimentation. To show the viability of the proposed framework in
real settings, an empirical study in collaboration with an IMD
company in Taiwan is conducted. Results show that the proposed
framework can significantly enhance the yield of IMD process from
10% to 87.5%. More details about the proposed framework and the
empirical study will be presented in later sections.

The rest of this article is organized as follows. In Section 2, the
proposed framework is introduced. In particular, the details about
response surface methodology and logistic regression that are
employed in the framework are discussed. In Section 3, an empirical
study where the proposed framework is applied in real settings is
conducted. Section 4 concludes with future research.

2. The Proposed Framework
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Fig. 3 The proposed framework

This section presents the proposed framework, along with some
discussion about its implementation. As shown in Fig. 2, the proposed
framework employs a sequential strategy to find the optimal solution.
In particular, when the algorithm just gets started, a first-order model
is built to represent the local response surface. The gradient of the
first-order model is used to derive the “path of improvement,” by
which the algorithm can find the improved solution. The process is
continued until there is strong evidence showing that the curvature
effects are significant (i.e., a first-order model is no longer a good fit).
Then, a more complicated model, i.e., a second-order model, is
employed, where some statistical tools including ridge analysis and
Canonical analysis can be used to locate the optimal solution.

A flowchart that illustrates the proposed framework is given in
Fig. 3. In the beginning, the proposed framework requires problem
definition, which entails a clear description about the problem.
Specifically, analysts need to define the response and the factors that
are involved in the research. Here we define the manufacturing
parameters as the factors and the quality of the finished product, i.e.,
defective or non-defective as the response. Specifically, at a particular
solution (parameter setting) x (say), let the probability that the
finished products is non-defective be 7(x). The logistic regression
utilizes the following link function, called logit function, to convert
the binary response into a quantitative value.
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When building the local model, logit(y) is used as the response. Let
the first-order model be

k
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or equivalently
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where the coefficients ( B’s) can be estimated by the maximum
likelihood method ®. Note that when the response is not normally
distributed, it may not be easy to find a closed-form expression for
the coefficient values that maximizes the likelihood function.
Therefore, an iterative process such as Newton’s method must be
used in this case.

The analysis procedure starts with factor screening as a means to
reduce the number of factors to be studied in the subsequent
experimentation. This step is critical because the IMD process
involves a large number of factors, it is necessary to identify the
important factors that can significantly affect the yield of IMD. In the
literature, there have been many screening designs proposed for factor
screening'’. In particular, the Resolution III fractional factorial
designs can be used as screening designs for inexpensive
experiments. For expensive experiments, supersaturated designs,
which require only N + 1 experimental runs for problems with
N factors, can be used. Details about the Resolution III fractional
factorial designs and the supersaturated designs can be found in
Myers and Montgomery®. Note that, in addition to the screening
designs, domain experts’ opinions are also useful in identifying the
important factors.

Once the important factors are identified, the proposed framework
employs the fractional factorial designs (Resolution III or IV) to build
the first-order model with the important factors. Suppose there are k
factors identified as important. Let the built first-order model be

k
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where By, B1...., By are regression coefficients. Based on Eq. (4),
the steepest ascent method can be performed to find the improved
solution. The steepest ascent method is to search for the optimal
solution along the path of improvement, which corresponds to the
direction that the response )} can increase most rapidly, i.e., the
gradient of the first-order model. The step size with respect to each
factor is determined as follows: The analyst first selects the factor that
has the largest absolute regression coefficient, say factor j, and let its
step size be 1. Then the step size of factor i (i J) is determined by
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In Eq. (5), the step size of each factor is proportional to the ratio that
their coefficient value is relative to the largest one. In other words, the
larger their coefficient value, the bigger the step size.

For each iteration, the lack-of-fit test is performed to evaluate the
appropriateness of the first-order model. When the lack-of-fit test
shows that the first-order model is no longer a good fit, central
composite design (CCD), which includes fractional factorial designs,
includes axial points and center points, are employed to build a

second-order model as follows:
k
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Based on the second-order model that can fully characterize the local
response surface, Canonical analysis is performed to locate the
optimal solution. The basic idea of the Canonical analysis is to
transform the second-order model into a new coordinate system with
the origin at the stationary point and then rotate the axes of this
system until they are parallel to the principal axes of the fitted
response surface. The transformed response model is given as
follows:

9 =9+ Lawi + L,ws + -+ Lwf @)

where the {w;} refers to the transformed independent variables and
{A;} are eigenvalues of the Hessian matrix of the second-order
models. Details about Canonical analysis can refer to Myers and
Montgomery £

Finally, before implementing the final solution, verification
experiments are suggested to confirm the improvement that the final
solution brings to the response of interest. The improvement can be
evaluated by comparing the responses produced by the initial solution
and by the final solution. When making comparisons, cares should be
taken in selecting an appropriate number of replications in order to
mitigate the effect of the sampling error.

3. An Empirical Study

In this section, an empirical study in collaboration with a
company located in New Taipei City of Taiwan is conducted to
demonstrate the viability of the proposed framework in real settings.
Briefly, the case company manufactures many kinds of complex hi-
tech plastic products (e.g., double injection, over molding or IMD)
with multi-color printing, 3D design shape and light weight. Recently,
the case company has applied IMD technique to produce LED panel,
film keyboard, backlight logo and fingerprint frame. However, the
rapid change of products presents major challenges for process
engineers to identify the optimal parameter setting for each product,
causing low yields. This study aims to improve the product yield
through parameter optimization with the proposed framework. One

product that has lowest yields (about 10%) is selected as the target
product.

Table 1 Current setting, low- and high-levels of the 8 manufacturing
parameters.

Factor Symbol  Current High Low

force plug temp., x; A
former block temp., x>
Initial pressure, x;
final pressure, x4
cavity temp., Xs
nozzle temp., x4

inject pressure, x;

T Q =mmUJT o w

holding pressure, xs

An extensive discussion with domain engineers indicates that two
key stages play a critical role in affecting yields: thermoforming and
injection molding. Therefore, attention is placed on the parameters
involved in the two stages. An analysis conducted based on historical
data shows that 8§ manufacturing parameters i can most affect the
yield. They are listed as follows:

Thermoforming:

e  Force plug temperature

e  Former block temperature
e Initial pressure

e  Final pressure

e  Cavity temperature

Injection molding:
e  Nozzle temperature
e Inject pressure

e Holding pressure

In the experimentation, the 8 manufacturing parameters are
defined as the factors and the quality of the finished product is
defined as the response. In particular, when the finished product is
defective, the response is set as 0; otherwise, it is set as 1. The current
setting of the 8 manufacturing parameters is given in Table 1 where
high- and low-levels of each parameter are specified. The 8
manufacturing parameters are labeled as factors A, B,...H and
X1, X3, ... Xg are used to denote their parameter settings (factor levels).
Taking the experimental budget into consideration, the 2 Resolution
LV fractional factorial designs is chosen to fit the first-order model.
The design matrix is shown in Table 2. In general, a 27 fractional
factorial design refers to the experiment that only requires 2*% runs
for k factors, each having two levels. It is 1/27 of the full factorial
experimental design. With Resolution IV designs, no main effect is

aliased with any other main effect or with any two-factor.
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With the first-order model, the steepest ascent method is
performed to find the improved solution. Specifically, the algorithm
evaluates the response of the solutions step by step along the path of
improvement and stops when the yield is no longer improved. In Fig.
4, it can be seen that the yield at the third solution is worse than that
of the second solution, thus the algorithm stops at the second solution.

The whole process is repeated three times when the lack-of-fit
test shows that the first-order model is not a good fit. Then the CCD
is employed to fit a second-order model. A two-factor CCD including
factorial design, axial points and center points is given in Fig. 5 for
illustration purpose. In Fig. 5, the red value denotes the response at
each design points. With the use of Canonical analysis and ridge
analysis, the optimal solution of the second-order model is located. As
shown in Table 6, the verification experiments show that the final
solution can enhance the yield to 87.5%, compared to the initial
solution that only has10% yield.
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Fig. 5 The central composite design employed in the empirical study
4. Conclusions
This paper proposes a systematic framework integrating RSM

and logistic regression to improve the yield of IMD manufacturing
process. The integrated framework becomes easy to identify the

optimal parameter setting, saving a great deal of time and money in
the manufacturing process. The viability of the proposed framework
is demonstrated through an empirical study in collaboration with an
IMD company. Results show that the proposed framework can
significantly enhance the yield from 10% to 87.5%.

Two directions are possible for future research. First, the
proposed framework should be modified to handle problems that have
categorical factors, in additional categorical response as shown in this
paper. The challenge lies in the development of effective screening
methods that work for categorical factors. Second, currently the CCD
is employed for building the second model. However, CCD can be
computationally demanding, especially for large-scale problems. A
better experimental design that is more efficient should be
investigated.
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